

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Mechanics M2 (WME02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024 Question Paper Log Number P74318A Publications Code WME02_01_2401_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
 - correct no. of terms;
 - dimensionally correct;
 - all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

Mechanics Abbreviations

- M(A) Taking moments about A.
- N2L Newton's Second Law (Equation of Motion)
- NEL Newton's Experimental Law (Newton's Law of Impact)
- HL Hooke's Law
- SHM Simple harmonic motion
- PCLM Principle of conservation of linear momentum
- RHS Right hand side
- LHS Left hand side

1a	Use of $v = \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	At least 2 powers going down by 1. Clear division by <i>t</i> is M0
	$v = 6t^2 - 42t + 60$	A1	Correct only
	Set $v = 0$ and correctly solves to obtain 2 values for t	M1	Complete method to obtain both values (implied by correct answers seen) $(0 = t^2 - 7t + 10 = (t - 2)(t - 5))$
	Obtain $t = 2$ and $t = 5$	A1	Correct only. Allow 2.0, 5.0
		[4]	
1b	Distance = $ x_2 - x_1 + x_3 - x_2 $ (= $ 45 - 52 + 52 - 41 $)	M1	Correct strategy dependent on their <i>t</i> being in $1 < t < 3$
	=11+7=18(m)	A1	Correct only
		[2]	
1c	Use of $a = \frac{\mathrm{d}v}{\mathrm{d}t}$	M1	Differentiate their v. Clear division by t is M0. A power going down by 1 (a=12t-42)
	Obtain $6(ms^{-2})$	A1	Must be positive – the Q asks for magnitude
		[2]	
		(8)	

29	Use of $\mathbf{I} - m\mathbf{w} - m\mathbf{u}$	M1	NB: Column vectors are accentable
2a	cscor 1 = mv - mu	1011	Condona wrong order but must be
			condone wrong order but must be
			Subtracting.
		A 1	Condone 5 in place of 0.5.
	$2\mathbf{i} + 5\mathbf{j} = 0.5(\mathbf{v} - (3\mathbf{i} + \mathbf{j}))$	AI	Correct unsimplified equation
			Accept as a vector equation or as a
	(v = 7i + 11i)		pair of equations, one for each
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		component.
			Accept alternative notations
			provided the meaning is clear.
	Use of Pythagoras	M1	For their v
			Independent M1 but they must have
			a v
	$ v = \sqrt{121 + 49} = \sqrt{170} \left(m \mathrm{s}^{-1} \right)$	A1	$13(m s^{-1})$ or better. (13.038)
		[4]	
2b	Correct use of trigonometry e.g.	M1	Condone subtraction in either order.
2b	Correct use of trigonometry e.g.	M1	Condone subtraction in either order. Allow if both fractions are the other
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$	M1	Condone subtraction in either order. Allow if both fractions are the other way up.
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (-57.5 18.4)	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives:
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (=57.5-18.4)	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ $(= 57.5 - 18.4)$	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product (21+11)
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ $(= 57.5 - 18.4)$	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (=57.5-18.4)	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1} \left(\frac{21+11}{\sqrt{10}\sqrt{170}} \right)$ cosine rule
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (= 57.5 - 18.4)	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ $(= 57.5 - 18.4)$ $\theta = 39.1$	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$ Accept ±39 or better (39.0938)
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (= 57.5 - 18.4) $\theta = 39.1$	M1 A1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$ Accept ±39 or better (39.0938) 0.68(2) radians is M1A0
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ (= 57.5 - 18.4) $\theta = 39.1$	M1 A1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$ Accept ± 39 or better (39.0938) 0.68(2) radians is M1A0 Accept $\pm (360-39) = \pm 321$ or better
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ $(= 57.5 - 18.4)$ $\theta = 39.1$	M1 A1 [2]	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$ Accept ± 39 or better (39.0938) 0.68(2) radians is M1A0 Accept $\pm (360-39) = \pm 321$ or better
2b	Correct use of trigonometry e.g. $\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$ $(= 57.5 - 18.4)$ $\theta = 39.1$	M1 A1 [2] (6)	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$ cosine rule $4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$ Accept ± 39 or better (39.0938) 0.68(2) radians is M1A0 Accept $\pm (360-39) = \pm 321$ or better

3a		M1	Use of $F = \mu R$
	$F_{\rm max} = \frac{-3}{3} \times 2g \cos \alpha (= 5.90)$		Seen or implied.
			Condone sine / cosine confusion
			Condone g missing
	WD against friction $= 6 \times their F_{max}$	M1	(=35.4(J)) Seen or implied as
			part of the 4^{th} M mark
	PE gain = $2e \times 6 \times \sin \alpha$	M1	dimensionally correct. Condone
	$(-6 \times 4^2 - 50.4)$		sine / cosine confusion
	$(=0\times\frac{1}{5}=30.4)$		
	Total $WD = WD$ against friction + WD		Dependent on the 3 preceding M
	against gravity (gain in PE)	DM1	marks. Require both terms and no
			extras
	Total WD = $85.8(J)$ or $86(J)$	A1	3 sf or 2 sf only
			$\left(8\sqrt{10}+36\right)\frac{g}{7}$ is A0 (incorrect
			units)
	NB a candidate who resolves parallel to t	the slop	e but never multiplies either
	component by 6 will score the first M1 o	nly	
		[5]	
3b	Work-energy equation	M1	Must be using work-energy.
	(KE gained = loss in GPE - WD)		Need all terms, no extras and
	against friction)		dimensionally correct.
			Condone sign errors
			e
	A		Condone sine / cosine confusion.
	$\frac{1}{2}$ $\frac{1}$	A1	Condone sine / cosine confusion. Unsimplified equation with at
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1	Condone sine / cosine confusion. Unsimplified equation with at most one error
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1 A1	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation.
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1 A1	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1 A1	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1 A1	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$ $v = 3.87 (\text{ms}^{-1}) \text{ or } 3.9 (\text{ms}^{-1})$	A1 A1 A1	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors 3 sf or 2 sf only
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$ $v = 3.87 (ms^{-1}) \text{ or } 3.9 (ms^{-1})$	A1 A1 A1 A1 [4]	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors 3 sf or 2 sf only
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$ $v = 3.87 (\text{ms}^{-1}) \text{ or } 3.9 (\text{ms}^{-1})$	A1 A1 A1 A1 [4] (9)	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors 3 sf or 2 sf only
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$ $v = 3.87 (ms^{-1}) \text{ or } 3.9 (ms^{-1})$	A1 A1 A1 A1 [4] (9)	Condone sine / cosine confusion. Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors 3 sf or 2 sf only

4a	If the division	of the shape i	nvolves non-star	ndard sha	apes (e.g. a trapezium) the centres of
	mass must be quoted correctly or a correct method used to find the position to score any				
	rectangle	-triangle	+triangle		
	$20a^2$	$-\frac{9}{2}a^2$	$\frac{9}{2}a^2$	B1	Correct mass ratios for a correct
	23a	3 <i>a</i>	$\frac{2}{2a}$		division of the folded template and $\frac{1}{2}$
	or		11	P 1	correct total of $20a^2$
	rectangle	rectangle	Double	DI	implied.
			triangle		B0B1 is possible if they have
	$3a^2$	$8a^2$	$9a^2$		incorrect masses but a full set of
	$\frac{1}{2}a$	2 <i>a</i>	2 <i>a</i>		correct distances. e.g. if they use the
	or		1		doubled the triangle. Or they might
	rectangle	trapezium	triangle		have a correct split with an error in
	$5a^2$	$\frac{21}{2}a^{2}$	$\frac{9}{2}a^{2}$		one of the areas or an incorrect (or
	$\frac{1}{2}a$	$\frac{48}{21}a$	2a		missing) total
					or equivalent
	Moments abo	ut AD or a par	allel axis.	M1	Dimensionally consistent.
		*			All terms for a correct division of L
					and no extras.
	2				Accept as part of a vector equation
	$40a^3 - \frac{27}{2}a^3$	$+9a^3 = 20a^2a$	d	AI	Correct unsimplified equation for their axis Allow for correct
	or $\frac{3}{2}a^3 + 16a^3 + 18a^3 = 20a^2d$			component in a vector equation.	
	or $\frac{2}{2}a^3 + \frac{48}{2}a^3$	$a^{3} + 9a^{3} = 20a^{3}$	^{2}d		1 1
	$d = \frac{71}{a} *$			A1*	Obtain given answer from correct
	$a - \frac{1}{40}a$				working. Need at least one line of
					working to collect like terms e.g.
					$20d = \frac{71}{2}a$ Final answer must be
					as printed i.e. $d = \dots$
				[5]	
4b	Moments abo	ut S		M1	A complete method to get an
					equation in W and F only.
					Need all terms and no extras.
		<u>, 1 C 1</u>	1 ()	C (1	Dimensionally consistent.
	they form the	moments equi	ne centre of mas	s for the	system they do not score marks until
	If they are cle	early using more	ments about A (e	.g. <i>d</i> and	4 <i>a</i> used as distances in their equation)
	this is M0 unl	less they includ	le the reaction at	\tilde{S} and re	esolve to form the required equation.
	If they say the	ey are using m	oments about S a	and have	just one incorrect distance allow
	MIAIA0A0 31			A1	Unsimplified equation with at most
	$4W \times \frac{31}{40}a +$	$W \times 3a = F \times$	5 <i>a</i>	111	one error
	or $(4W+W)$	(2.22a - a) =	=5 <i>aF</i>	A1	Correct unsimplified equation
	$F = \frac{61}{50}W$	V		A1	Accept 1.22W or 1.2W
				[4]	
				(9)	

5a	Use of $P = Fv$	M1	$\frac{10000}{16}$ (= 625) o.e. seen or
			implied in the working.
			Allow for $\frac{10}{16}$
	Equation of motion for the system	M1	Dimensionally correct. Need all
			terms and no extras. Condone
			sign errors and sine/cosine
			confusion
			If they start with separate
			equations for the van and trailer,
			just mark the combined equation.
	$F - 400 - 800g \sin \alpha = 800a$	A1	Unsimplified equation in P or F
			with a most one error
		A1	Correct unsimplified equation in P
			or F
			Use of cosine in place of sine for
			both vehicles counts as a repeated
			error and only loses 1 mark
	Obtain deceleration	A1	3 sf or 2 sf only
	$0.419(ms^{-2}) \text{ or } 0.42(ms^{-2})$		Answer must be positive.
		[5]	
<u></u>		[5]	
50	Equation of motion for the van or the	MI	Dimensionally correct. Need all
	trailer		terms and no extras. Condone
			sign errors and sine/cosine
			confusion
			Use the mass in the <i>ma</i> term to
			decide which part of the system
			they are using.
	$T - 150 - 200g\sin\alpha = 200a$	A1	Unsimplified equation with at
	or $F - T - 250 - 600g \sin \alpha = 600a$		most one error
		A1	Correct unsimplified equation
	Obtain tension $206(N)$ or $210(N)$	A1	3 sf or 2 sf only
		[4]	
		(9)	

ба	$ \xrightarrow{P} \xrightarrow{2m} \xrightarrow{B} \xrightarrow{2m} \xrightarrow{2m} \xrightarrow{B} \xrightarrow{2m} $		
	Moments about A:	M1	Dimensionally correct. Condone sine / cosine confusion
	$5P = 40 \times \frac{7}{2} \cos \theta$	A1	Correct unsimplified equation
	<i>P</i> = 22.4 *	A1*	Obtain given answer from correct working. Need to see evidence of $\cos \theta = \frac{4}{5}$
		[3]	
6b	Two equations required. M1A1 for the first equation seen, M1A1 for the second equation. If more than 2 equations mark the two equations used to obtain the resultant, or the best 2 if they do not so on to find the resultant.		
	First equation	M1	e.g. Resolve horizontally Condone sine / cosine confusion
	$H = P\sin\theta \left(=13.44\right)$	A1	Correct unsimplified equation
	Second equation	M1	e.g. Resolve vertically Condone sine / cosine confusion
	$V + P\cos\theta = 40 \left(V = 22.08 \right)$	A1	Correct unsimplified equation
	$\left R\right = \sqrt{H^2 + V^2}$	DM1	solve for $ R $ Dependent on the 2 preceding Ms
	R = 26 (N)	A1	Or better (25.84879) Accept $\frac{24\sqrt{29}}{5}$
		[6]	
	Two alternatives on following page		

6balt	First equation	M1	e.g. Resolve parallel Condone sine / cosine confusion	
	$X = 40\sin\theta (= 24)$	A1	Correct unsimplified equation	
	Second equation	M1	e.g. Resolve perpendicular Condone sine / cosine confusion	
	$Y + P = 40\cos\theta \left(Y = 9.6\right)$	A1	Correct unsimplified equation	
	$\left R\right = \sqrt{X^2 + Y^2}$	DM1	solve for $ R $ Dependent on the 2 preceding Ms	
	R = 26(N)	A1	Or better (25.84879)	
			Accept $\frac{24\sqrt{29}}{5}$	
		[6]		
	Alternative equations:			
	$M(C) 40 \times 1.5 \cos \theta + H \times 5 \sin \theta = V \times 5$	$5\cos\theta$		
	$M(B) 2P + 7\cos\theta \times V = 7\sin\theta \times H + 3.5 \times 40\cos\theta$			
	M(G) $1.5P + 3.5\sin\theta \times H = 3.5\cos\theta \times H$	V		
6balt	40 N <i>R</i> N	M1 A1	3 force diagram seen or implied Forces and angle in correct positions	
	Use Cosine Rule	M1	Correct formula used	
	$(R)^2 = 40^2 + 22.4^2 - 2 \times 40 \times 22.4 \cos \theta$	A1	Correct unsimplified equation	
	Substitute for trig and solve for $ R $	DM1	Dependent on the 2 preceding Ms	
	R = 26 (N)	A1	Or better (25.84879) Accept $\frac{24\sqrt{29}}{5}$	
		[6]		
		(9)		

7a	$\longrightarrow 6u \longrightarrow u$		If 6 <i>u</i> and <i>u</i> are in opposite
			directions, mark as a sign error.
	m 5m		
	$x \longleftrightarrow y$		
			Need all 4 terms. Dimensionally
	Use of CLM	MI	Condone <i>x</i> in the wrong direction
	6mu + 5mu = 5my - mx		
	(11u = 5y - x)	A1	Correct unsimplified equation
	Use of immediate	M1	Used correctly. Dimensionally correct.
	Use of impact law	MII	Condone sign errors
	x + y = 5eu	A1	Correct unsimplified equation. Signs consistent with their CLM equation
	Solve for x in terms of e and u: x = 25		Dependent on the first 2 M marks. As
	6x = 25eu - 11u	DM1	far as $kx =$
	or solve for <i>e</i> in terms of <i>y</i> and <i>u</i> : $e = \frac{6y-11u}{5u}$		Dependent on the previous 2 M marks
	Use $x > 0 \ (\Rightarrow y > \frac{11}{5}u)$: $25e > 11$	DM1	Use correct inequality for their <i>x</i>
	$\frac{11}{1} < o(-1)$	A 1	Or equivalent. Condone if 1 not
	$\frac{1}{25} < e(,,1)$	AI	incorrect upper limit. cso
		[7]	
7b	$x = \frac{2}{3}u$ and $y = \frac{7}{3}u$	B 1	Seen or implied
	Total KE lost	M1	Complete expression.
	$(1_{m}, 26, 2, 1_{5}, 2, 2)$		Dimensionally correct. Correct
	$=\left(\frac{-m\times 50u}{2}+\frac{-5m\times u}{2}\right)$		masses connected to correct
	(1, 2, 1, 2)		speeds. Condone subtraction in
	$-\left(\frac{1}{2}m\times x^2+\frac{1}{2}5m\times y^2\right)$		the wrong order. Allow in x and y
	$-\left(\frac{1}{m\times 36u^2}+\frac{1}{5m\times u^2}\right)$	A1ft	Correct unsimplified expression in
	$\left[-\left(\frac{-m\times 30u}{2}+\frac{-3m\times u}{2}\right)\right]$		m and u . Follow their x , y with e
	$(1 \ 4 \ 2 \ 1 \ 49 \ 2)$		substituted
	$-\left(\frac{-m\times-u^2+-5m\times-u^2}{2}\right)$		
	20 2	A1	Or single term equivalent.
	$=\frac{-2}{3}mu^2$		Accept $6.7mu^2$ or better
		[4]	
7c	velocity of Q after collision with wall		
	$=\pm fy \left(=\pm f \times \frac{7}{3}u\right)$	B1ft	Follow their y (in terms of u)
	7, 2	1	Correct inequality for their <i>x</i> , <i>y</i>
	Second collision if $fy > x - \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$	DM1	Dependent on the B1 and <i>P</i> moving away from the wall
	$2 \leq f = 1$	A 1	Correct only
	$\left \begin{array}{c} \overline{7} \leq J \\ \overline{7} \end{array} \right ^{-1}$	AI	Need both limits
		[3]	
Q.,	The summation to find the state of the	(14)	
ба	Use symmetry to find time taken: -7 = 7 - gt	1/11	or equivalent complete method using $suvat$ to find the time taken e σ find the
	, -, 5,		time for vertical distance = 0

	$t = \frac{14}{g} \left(= 1.428\right)$	A1	Correct value seen or implied
	Horizontal distance $= 4t$	DM1	Complete method using <i>suvat</i> to find the distance. Dependent on the preceding M1
	=5.71(m) or 5.7(m)	A1	3 sf or 2 sf only $\frac{40}{7}$ scores A0
			$\frac{56}{g}$ scores A0 (incorrect units)
		[4]	
8a alt	Find speed and angle of projection	M1	Correct use of Pythagoras and trig.
	Speed = $\sqrt{16} + 49 = \sqrt{65} (m s^{-1})$	AI	Both values seen or implied.
	Direction = $\tan^{-1}\frac{7}{4}$ (= 60.3°)		
	$u^2 \sin 2\alpha$	DM1	Or equivalent. Dependent on the
	Use of $R = \frac{q}{q}$		preceding MI
	=5.71(m) or 5.7(m)	A1	3 sf or 2 sf only
01		[4]	
80	$ \mathbf{v} = 5 \Longrightarrow \mathbf{v} = 4\mathbf{i} + 3\mathbf{j} \text{ or } \mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$	BI	correct vertical component seen or implied
	-3 = 3 - gT	M1	Complete method to find <i>T</i>
			e.g. $T = \frac{14}{g} - 2 \times \frac{4}{g}$
	T = 0.612 or T = 0.61	A1	3 sf or 2 sf only $\frac{30}{49}$ scores A0
			$\frac{6}{g}$ scores A0 (incorrect units)
		[3]	
8c	$\binom{4}{7} \cdot \binom{4}{p} = 0$	M1	Or equivalent method to find perpendicular velocity
	$\Rightarrow p = -\frac{16}{7}, \mathbf{v} = 4\mathbf{i} - \frac{16}{7}\mathbf{j}$	A1	Correct vertical component Allow -2.28
	$\left(\left(-\right) \frac{16}{7} \right)^2 = 7^2 - 2gh$	DM1	Complete method using <i>suvat</i> or energy to form an equation in <i>h</i> only. Dependent on the preceding M1
	h = 2.23 or $h = 2.2$	A1	3 sf or 2 sf only cso (negative vertical
		[4]	component seen at some pointy
8c alt	$\begin{pmatrix} 4 \\ - \end{pmatrix} \begin{pmatrix} 4 \\ - \end{pmatrix} = 0$	M1	Or equivalent method to find time when velocity perpendicular
	(7)(7-gt)		
	$t = \frac{65}{7g} \left(= 0.947\right)$	A1	Correct time
	$h = 7t - \frac{1}{2}gt^2$	DM1	Complete method using <i>suvat</i> to form an equation in <i>h</i> only.
	h = 2.23 or h = 2.2	A1	3 sf or 2 sf only cso
		[4]	
		(11)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom