Pearson Edexcel

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Mechanics M2 (WME02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024
Question Paper Log Number P74318A
Publications Code WME02_01_2401_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
- correct no. of terms;
- dimensionally correct;
- all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS Right hand side
LHS Left hand side

1a	Use of $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$	M1	At least 2 powers going down by 1 . Clear division by t is M0
	$v=6 t^{2}-42 t+60$	A1	Correct only
	Set $v=0$ and correctly solves to obtain 2 values for t	M1	Complete method to obtain both values (implied by correct answers seen) $\left(0=t^{2}-7 t+10=(t-2)(t-5)\right)$
	Obtain $t=2$ and $t=5$	A1	Correct only. Allow 2.0, 5.0
		[4]	
1b	$\begin{aligned} \text { Distance }= & \left\|x_{2}-x_{1}\right\|+\left\|x_{3}-x_{2}\right\| \\ & (=\|45-52\|+\|52-41\|) \end{aligned}$	M1	Correct strategy dependent on their t being in $1<t<3$
	$=11+7=18(\mathrm{~m})$	A1	Correct only
		[2]	
1c	Use of $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$	M1	Differentiate their v. Clear division by t is M0. A power going down by 1 $(a=12 t-42)$
	Obtain 6(ms^{-2})	A1	Must be positive - the Q asks for magnitude
		[2]	
		(8)	

2a	Use of $\mathbf{I}=m \mathbf{v}-m \mathbf{u}$	M1	NB: Column vectors are acceptable. Condone wrong order but must be subtracting. Condone 5 in place of 0.5 .
	$\begin{aligned} & 2 \mathbf{i}+5 \mathbf{j}=0.5(\mathbf{v}-(3 \mathbf{i}+\mathbf{j})) \\ & (\mathbf{v}=7 \mathbf{i}+11 \mathbf{j}) \end{aligned}$	A1	Correct unsimplified equation Accept as a vector equation or as a pair of equations, one for each component. Accept alternative notations provided the meaning is clear.
	Use of Pythagoras	M1	For their \mathbf{v} Independent M1 but they must have av
	$\|\nu\|=\sqrt{121+49}=\sqrt{170}\left(\mathrm{~ms} \mathrm{~s}^{-1}\right)$	A1	$13\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or better. (13.038.....)
		[4]	
2b	Correct use of trigonometry e.g. $\begin{gathered} \theta=\tan ^{-1} \frac{11}{7}-\tan ^{-1} \frac{1}{3} \\ (=57.5-18.4) \end{gathered}$	M1	Condone subtraction in either order. Allow if both fractions are the other way up. Alternatives: scalar product $\theta=\cos ^{-1}\left(\frac{21+11}{\sqrt{10} \sqrt{170}}\right)$ cosine rule $4 \times 29=10+170-2 \sqrt{10} \sqrt{170} \cos \theta$
	$\theta=39.1$	A1	Accept ± 39 or better (39.0938...) 0.68 (2) radians is M1A0 Accept $\pm(360-39)= \pm 321$ or better
		[2]	
		(6)	

3a	$F_{\max }=\frac{1}{3} \times 2 g \cos \alpha(=5.90 \ldots)$	M1	Use of $F=\mu R$ Seen or implied. Condone sine / cosine confusion Condone g missing
	WD against friction $=6 \times$ their $F_{\text {max }}$	M1	(=35.4...(J)) Seen or implied as part of the $4^{\text {th }} \mathrm{M}$ mark
	$\begin{aligned} \text { PE gain }= & 2 g \times 6 \times \sin \alpha \\ & \left(=6 \times \frac{42}{5}=50.4\right) \end{aligned}$	M1	dimensionally correct. Condone sine / cosine confusion
	Total WD = WD against friction + WD against gravity (gain in PE)	DM1	Dependent on the 3 preceding M marks. Require both terms and no extras
	Total WD $=85.8(\mathrm{~J})$ or $86(\mathrm{~J})$	A1	\qquad 3 sfor 2 only units)
	NB a candidate who resolves parallel to the slope but never multiplies either component by 6 will score the first M1 only		
		[5]	
3b	Work-energy equation (KE gained = loss in GPE - WD against friction)	M1	Must be using work-energy. Need all terms, no extras and dimensionally correct. Condone sign errors Condone sine / cosine confusion.
	$\frac{1}{2} \times 2 v^{2}=2 g \times 6 \sin \alpha-6 \times \frac{2}{3} g \cos \alpha$	A1 A1	Unsimplified equation with at most one error Correct unsimplified equation. They must have started with correct expressions, but follow through on any calculation errors
	$v=3.87\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or $3.9\left(\mathrm{~ms}^{-1}\right)$	A1	3 sf or 2 sf only
		[4]	
		(9)	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 5a } & \text { Use of } P=F v & \text { M1 } & \begin{array}{l}\frac{10000}{16}(=625) \text { o.e. seen or } \\
\text { implied in the working. } \\
\text { Allow for } \frac{10}{16}\end{array} \\
\hline & \text { Equation of motion for the system } & \text { M1 } & \begin{array}{l}\text { Dimensionally correct. Need all } \\
\text { terms and no extras. Condone } \\
\text { sign errors and sine/cosine } \\
\text { confusion } \\
\text { If they start with separate } \\
\text { equations for the van and trailer, } \\
\text { just mark the combined equation. }\end{array} \\
\hline & F-400-800 g \sin \alpha=800 a & \text { A1 } & \begin{array}{l}\text { Unsimplified equation in } P \text { or } F \\
\text { with a most one error } \\
\text { Correct unsimplified equation in } P \\
\text { or } F\end{array}
$$

\hline Ase of cosine in place of sine for

both vehicles counts as a repeated

error and only loses 1 mark\end{array}\right]\)| Obtain deceleration |
| :--- |
| $0.419\left(\mathrm{~ms}^{-2}\right)$ or $0.42\left(\mathrm{~ms}^{-2}\right)$ |

6a			
	Moments about A :	M1	Dimensionally correct. Condone sine / cosine confusion
	$5 P=40 \times \frac{7}{2} \cos \theta$	A1	Correct unsimplified equation
	$P=22.4$ *	A1*	Obtain given answer from correct working. Need to see evidence of $\cos \theta=\frac{4}{5}$
	[3]		
6b	Two equations required. M1A1 for the first equation seen, M1A1 for the second equation. If more than 2 equations mark the two equations used to obtain the resultant, or the best 2 if they do not go on to find the resultant.		
	First equation	M1	e.g. Resolve horizontally Condone sine / cosine confusion
	$H=P \sin \theta(=13.44)$	A1	Correct unsimplified equation
	Second equation	M1	e.g. Resolve vertically Condone sine / cosine confusion
	$V+P \cos \theta=40(V=22.08)$	A1	Correct unsimplified equation
	$\|R\|=\sqrt{H^{2}+V^{2}}$	DM1	solve for $\|R\|$ Dependent on the 2 preceding Ms
	$\|R\|=26(\mathrm{~N})$	A1	$\begin{aligned} & \text { Or better }(25.84879 \ldots \ldots) \\ & \text { Accept } \frac{24 \sqrt{29}}{5} \end{aligned}$
		[6]	
	Two alternatives on following page		

6balt	First equation	M1	e.g. Resolve parallel Condone sine / cosine confusion
	$X=40 \sin \theta(=24)$	A1	Correct unsimplified equation
	Second equation	M1	e.g. Resolve perpendicular Condone sine / cosine confusion
	$Y+P=40 \cos \theta(Y=9.6)$	A1	Correct unsimplified equation
	$\|R\|=\sqrt{X^{2}+Y^{2}}$	DM1	solve for $\|R\|$ Dependent on the 2 preceding Ms
	$\|R\|=26(\mathrm{~N})$	A1	Or better (25.84879.....) Accept $\frac{24 \sqrt{29}}{5}$
		[6]	
	Alternative equations: $\mathrm{M}(C) 40 \times 1.5 \cos \theta+H \times 5 \sin \theta=V \times 5 \cos \theta$ $\mathrm{M}($ B $) \quad 2 P+7 \cos \theta \times V=7 \sin \theta \times H+3.5 \times 40 \cos \theta$ $\mathrm{M}(G) \quad 1.5 P+3.5 \sin \theta \times H=3.5 \cos \theta \times V$		
6balt		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3 force diagram seen or implied Forces and angle in correct positions
	Use Cosine Rule	M1	Correct formula used
	$(\|R\|)^{2}=40^{2}+22.4^{2}-2 \times 40 \times 22.4 \cos \theta$	A1	Correct unsimplified equation
	Substitute for trig and solve for $\|R\|$	DM1	Dependent on the 2 preceding Ms
	$\|R\|=26(\mathrm{~N})$	A1	$\begin{aligned} & \text { Or better }(25.84879 \ldots \ldots) \\ & \text { Accept } \frac{24 \sqrt{29}}{5} \end{aligned}$
		[6]	
		(9)	

7a			If $6 u$ and u are in opposite directions, mark as a sign error.
	Use of CLM	M1	Need all 4 terms. Dimensionally consistent. Condone sign errors Condone x in the wrong direction
	$\begin{aligned} & 6 m u+5 m u=5 m y-m x \\ & (11 u=5 y-x) \end{aligned}$	A1	Correct unsimplified equation
	Use of impact law	M1	Used correctly. Dimensionally correct. Condone sign errors
	$x+y=5 e u$	A1	Correct unsimplified equation. Signs consistent with their CLM equation
	Solve for x in terms of e and u : $6 x=25 e u-11 u$ or solve for e in terms of y and $u: e=\frac{6 y-11 u}{5 u}$	DM1	Dependent on the first 2 M marks. As far as $k x=$.. Dependent on the previous 2 M marks
	Use $x>0\left(\Rightarrow y>\frac{11}{5} u\right): 25 e>11$	DM1	Use correct inequality for their x
	$\frac{11}{25}<e(, \ldots 1)$	A1	Or equivalent. Condone if 1 not mentioned. Allow with <1. A0 if incorrect upper limit. cso
		[7]	
7b	$x=\frac{2}{3} u$ and $y=\frac{7}{3} u$	B1	Seen or implied
	Total KE lost $\begin{aligned} = & \left(\frac{1}{2} m \times 36 u^{2}+\frac{1}{2} 5 m \times u^{2}\right) \\ & -\left(\frac{1}{2} m \times x^{2}+\frac{1}{2} 5 m \times y^{2}\right) \end{aligned}$	M1	Complete expression. Dimensionally correct. Correct masses connected to correct speeds. Condone subtraction in the wrong order. Allow in x and y
	$\begin{aligned} = & \left(\frac{1}{2} m \times 36 u^{2}+\frac{1}{2} 5 m \times u^{2}\right) \\ & -\left(\frac{1}{2} m \times \frac{4}{9} u^{2}+\frac{1}{2} 5 m \times \frac{49}{9} u^{2}\right) \end{aligned}$	A1ft	Correct unsimplified expression in m and u. Follow their x, y with e substituted
	$=\frac{20}{3} m u^{2}$	A1	Or single term equivalent. Accept $6.7 m u^{2}$ or better
		[4]	
7c	velocity of Q after collision with wall $= \pm f y \quad\left(= \pm f \times \frac{7}{3} u\right)$	B1ft	Follow their y (in terms of u)
	Second collision if $f y>x \frac{7}{3} f u>\frac{2}{3} u$	DM1	Correct inequality for their x, y Dependent on the B 1 and P moving away from the wall
	$\frac{2}{7}<f, 1$	A1	Correct only Need both limits
		[3]	
		(14)	
8a	Use symmetry to find time taken: $-7=7-g t$	M1	Or equivalent complete method using suvat to find the time taken e.g. find the time for vertical distance $=0$

	$t=\frac{14}{g}(=1.428 \ldots)$	A1	Correct value seen or implied
	Horizontal distance $=4 t$	DM1	Complete method using suvat to find the distance. Dependent on the preceding M1
	$=5.71(\mathrm{~m})$ or $5.7(\mathrm{~m})$	A1	3 sf or 2 sf only $\frac{40}{7}$ scores A0 $\frac{56}{g}$ scores A0 (incorrect units)
		[4]	
8a alt	Find speed and angle of projection	M1	Correct use of Pythagoras and trig.
	$\begin{aligned} & \text { Speed }=\sqrt{16+49}=\sqrt{65}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { Direction }=\tan ^{-1} \frac{7}{4} \quad\left(=60.3^{\circ}\right) \end{aligned}$	A1	Both values seen or implied.
	Use of $R=\frac{u^{2} \sin 2 \alpha}{g}$	DM1	Or equivalent. Dependent on the preceding M1
	$=5.71(\mathrm{~m})$ or $5.7(\mathrm{~m})$	A1	3 sf or 2 sf only
		[4]	
8b	$\|\mathbf{v}\|=5 \Rightarrow \mathbf{v}=4 \mathbf{i}+3 \mathbf{j}$ or $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$	B1	Correct vertical component seen or implied
	$-3=3-g T$	M1	Complete method to find T e.g. $T=\frac{14}{g}-2 \times \frac{4}{g}$
	$T=0.612$ or $T=0.61$	A1	3 sf or 2 sf only $\frac{30}{49}$ scores A0 $\frac{6}{9}$ scores A0 (incorrect units)
		[3]	
8c	$\binom{4}{7} \cdot\binom{4}{p}=0$	M1	Or equivalent method to find perpendicular velocity
	$\Rightarrow p=-\frac{16}{7}, \quad \mathbf{v}=4 \mathbf{i}-\frac{16}{7} \mathbf{j}$	A1	Correct vertical component Allow -2.28....
	$\left((-) \frac{16}{7}\right)^{2}=7^{2}-2 g h$	DM1	Complete method using suvat or energy to form an equation in h only. Dependent on the preceding M1
	$h=2.23$ or $h=2.2$	A1	3 sf or 2 sf only cso (negative vertical component seen at some point)
		[4]	
$\begin{aligned} & \text { 8c } \\ & \text { alt } \end{aligned}$	$\binom{4}{7} \cdot\binom{4}{7-g t}=0$	M1	Or equivalent method to find time when velocity perpendicular
	$t=\frac{65}{7 g}(=0.947 \ldots)$	A1	Correct time
	$h=7 t-\frac{1}{2} g t^{2}$	DM1	Complete method using suvat to form an equation in h only.
	$h=2.23$ or $h=2.2$	A1	3 sf or 2 sf only cso
		[4]	
		(11)	

